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The theory of diffraction by a coiled-coil is applied to a-keratin models and extended to deal with 
multi-strand ropes of various strand directions. A method of calculating the Fourier transforms 
of multi-strand ropes is described and important parts of the transforms are given in graphical 
form. 

Introduction 

I t  is now well es tabl ished tha t  the a-hel ix  described 
by Pauling,  Corey & Branson (1951) occurs in synthet ic  
polypeptides (Elliott  & Malcolm, 1959) and in globular 
proteins (Kendrew, Dickerson, Strandberg,  Har t ,  
Davies, Phi l l ips  & Shore, 1960). I t  has also been 
suggested tha t  a-helices distorted into coiled-coils are 
the  basis of the s t ructure  of the Ic-m-e-f  group of 
fibrous proteins (Pauling & Corey, 1953; Crick, 1952, 
1953a, b). A method  of calculating the Fourier  trans- 
form of a coiled-coil has been described by  Crick 
(1953a, b) and calculations over l imi ted  regions have 
been reported by  Lang (1956) and  Cohen & Holmes 
(1963). In  the present  communica t ion  detai ls  of the 
Fourier  t ransforms of various coiled-coil models of 
a -kera t in  are given as a f irst  step towards the recogni- 
t ion of such structures from X-ray  diffract ion pat terns.  

The coi led-coi l  m o d e l  

A continuous coiled-coil m a y  convenient ly  be de- 
scribed (Crick 1953a) by  the  parametr ic  equations 

x = ro cos (og0t +g0) 
y = ro sin (o0t +g0) 
z = Pogot12z + zo 

x' = rl cos (wlt+q~l) 
y' = rl  sin (wlt+(pl) 
Zt~_~O (1) 

where x, y, z are the coordinates of the major  hel ix and 
x', y', z' those of the minor  helix. The major  hel ix  
coordinates refer to a r ight -handed system of f ixed 
axes and the minor hel ix  coordinates refer to a set of 
axes which rotate  with the major  hel ix as in Crick 
(1953a). The point  (x', y', z') t races out the continuous 
coiled-coil as t is var ied and  the discontinuous coiled- 
coil is obta ined by  supposing a point  to occur at t = h ,  
and fur ther  points  at  f ixed in tervals  of t=to. The 
coordinates of the atoms in the seven residues which 
consti tute the asymmet r ic  uni t  in the a -kera t in  model  
were calculated from the expressions given by  Crick 
(1953a) and Lang (1956) and the coordinates for an 
undis tor ted a-hel ix l is ted in Table 1. These coordinates 

Table  1. Coordinates of a residue in an undistorted, 
right.handed a-helix 

xs Ys zs rs q~8 
fl-C 3.20 0 0 3.20 0 
a-C 2-15 0.75 -0.83 2-28 19.3 

N 1-04 1.17 0.03 1.57 48.4 
C -0.11 1.61 -0.44 1.61 93.9 
O -0.39 1-72 - 1.64 1.76 102.8 

fl-C* --0.56 3.15 1.50 3.20 100.0 

are a modified version of those given by Pauling, 
Corey, Yakel & Marsh (1955). Setting zs=q)s=O for the 
fl carbon atom as in Table 1 would produce the type of 
knob-hole packing envisaged by Crick (1953b) in his 
Fig. 6 for poly-L-alanine. The parameters g0 and z0 
were taken as zero for convenience and 91 calculated 
from 

q~l =q~,+{(iVl-lVo)/M}q~M with  ~ M =  27~Mz, cos  a/c, 

where No ( =  1) is the  number  of turns  of the major  
helix, N1 ( =  36) is the number  of turns  of the minor  
hel ix and M (=  126) is the number  of residues in  the 
repeat  dis tance c (=186/~).  The coordinates of the  
th i r ty-f ive  atoms in the asymmet r ic  uni t  are given in  
Table  2 for r0--5"2 A. All the formulae used in  this  
account refer to lef t -handed minor  and  r ight -handed 
major  helices so tha t  the  coordinates in Table  1 were 
reflected in the xOz plane for the purposes of calcula- 
t ion and  the results again reflected to give the values in 
Table 2. In  addi t ion we have calculated the changes in 
bond lengths  and in te rbond angles which take  place 
when the a-hel ix  is distorted into a coiled-coil and  these 
are included in Table  2. 

The Fourier  t rans form of the m o d e l  

We have calculated part of the Fourier transform of 
the model by means of the theory for simple helices 
given by Cochran, Crick & Vand (1952) and the co- 
ordinates given in Table 2. This provided a useful 
check on later calculations but is a cumbersome 



814 THE FOURIER TRANSFORM OF THE COILED-COIL MODEL FOR o~-KERATIN 

Table  2. 

(a) Atomic coordinates of asymmetric unit in a coiled-coil with r0= 5.2 /~ (Oz=major 

x y z 
fl-c(1) 8.400 o.ooo o.ooo 
a-C(1) 7-350 -- 0.886 -- 0-696 

N(1) 6.243 -- 1.151 0.235 
C(1) 5.097 -- 1.658 --0.152 
O(1) 4.813 --1.973 -- 1.312 

fl-C(2) 4.656 -- 2.844 2.021 
v¢-C(2) 4.103 -- I. 842 1.002 

N(2) 3.877 -- 0.547 1.637 
C(2) 3.658 0.563 0.966 
0(2) 3.603 0.547 --0.256 

fl-C(2) 2.212 1.591 2.710 
o¢-C (3) 3.449 1.795 1.861 

N(3) 4.607 1.960 2.718 
C(3) 5.837 1.892 2.273 
0(3) 6-150 1.692 1.087 

fl-C(4) 6.749 3.508 3.997 
a-C(4) 6.892 2.100 3.390 

N(4) 6.679 1.095 4.444 

(b) Bond lengths and angles in a coiled-coil compared 

Bond Maximum Undistorted Minimum 
flC-aC 1-540 1.535 1.514 
aC-N 1-472 1-465 1-450 
N-C 1.318 1.317 1.307 
C-O 1.248 1.237 1.226 
C--aC* 1.556 1.546 1.528 
N-O~ 2.864 2.841 2.813 

helix axis) 

x y z 
C(4) 6.488 --0-182 4-182 
0(4) 6.466 --0.682 3-043 

~-C(5) 7-545 -- 0.989 6.342 
a-C(5) 6-288 -- 1-039 5.460 

N(5) 5.147 --0.511 6.205 
C(5) 4.015 --0.190 5.635 
0(5) 3.767 --0.300 4.439 

fl-C(6) 2-631 -- 0.753 7.624 
a-C(6) 2.974 0.342 6.619 

N(6) 3.507 1-508 7.304 
C(6) 4.123 2.488 6-688 
0(6) 4.311 2-546 5.471 

~-C(7) 3.395 4.258 8.312 
a-C(7) 4.600 3.602 7.643 

N(7) 5.469 3.009 8.664 
C(7) 6.438 2-164 8.376 
0(7) 6.727 1.779 7.225 

with values in an undistorted a-helix 

Angle Maximum Undistorted Minimum 
flC-aC-N 110.35 112.46 109-26 
aC-N-C 123-53 122-55 122-66 
N-C-O 125.33 122.56 124-69 
O-C-aC* 122.53 121.05 121.29 
C-aC*-flC* 110.45 110.86 109-12 
N-C-aC* 113.70 116"39 112-78 
C-N-Or 116.07 114.12 114-97 

* Indicates next residue, t Indicates next-but-one residue. 

m e t h o d  a n d  no t  so i l l u m i n a t i n g  as t he  use of t he  
express ion  de r ived  b y  Crick (1953a) a n d  L a n g  (1956) 
in  which  on ly  t he  u n d i s t o r t e d  a -he l ix  coord ina tes  for 
one res idue  are  needed.  The express ion  for a s ingle  set  
of po in t s  is :  

C(R,v,1/c ) = ZZ , .~ .~ ,Jv (2nRro)  
p q s d 

X Jq(2~R~l)Js(2~(1/c)rl s in  c~) 

x Ja(27~RA ) exp { i [P (V-  T0 + ½z) 

+ q ( - % v + ~ 0 + ~  + ½~) + s ( ~  +~1) 

+ d(v  + ~vl - ere + ½~) - m'Cfu + 2~zol/c]}, (2) 

sub jec t  to  t he  res t r i c t ion ,  

N o p + ( N 1 - 2 Y o ) q + N l s + ( N l + N o ) d  = l + M m '  (3) 

where  p, q, s, d a n d  m '  m a y  t a k e  a n y  in t eg ra l  value.  
All  t he  p u b l i s h e d  vers ions  of (2) & (3) con ta in  mino r  
m i s p r i n t s  or errors.  L a n g  (1956) corrected Crick 's  

fo rmulae  b u t  has  a m i s p r i n t  in  (3) wh i l s t  the  fo rmula  
g iven  b y  R a m a c h a n d r a n  (1960) has  a n  er roneous  s ign 
for m'  in  (3). I n  these  fo rmulae :  

R, v 2, 1/c(= Z) are cy l indr ica l  coord ina tes  in  rec iprocal  
space;  re, q~o, zo are t he  coord ina tes  of the  or igin of the  
r o t a t i n g  f rame  a t  t = 0 ;  n is the  r ad ius  of the  minor  
he l ix ;  ~ l = r l ( 1  + cos a) /2  a n d  A = n  (1 - cos a) /2  where  
t a n  a = 2~roNo/c. 

The  n a t u r e  of the  so lu t ion  is m o s t  s imp ly  descr ibed  

in  t e rms  of p a r a m e t e r s  m a n d  2 which  are r e l a t ed  to  1 b y  

Z = l / c = m / h + 2 / P .  (4) 

This  emphas izes  the  fac t  t h a t  t he  coiled-coil can  be 
r ega rded  as a s imple  he l ix  of p i t ch  P w i t h  a s y m m e t r i c  
un i t s  of seven  res idues  d i s t r i b u t e d  a t  ve r t i ca l  i n t e rva l s  
of h a n d  is a mos t  useful  device  in  t he  genera l  case 
w h e n  c is v e r y  large.  I t  follows f rom the  t h e o r y  of 
Cochran,  Crick & V a n d  (1952) t h a t  the  t r a n s f o r m  will  
consis t  of b ranches  e m a n a t i n g  f rom the  origin,  a n d  a 
series of po in t s  on the  m e r i d i a n  d i s t a n t  m/h f rom the  
origin,  where  m =  _ 1, _+ 2, etc. The  s epa ra t i on  b e t w e e n  
each l aye r  l ine  and  the  n e x t  in  a b r a n c h  wil l  be 1/P. 
Thus  the  5 .15J~ m e r i d i o n a l  re f l ec t ion  wou ld  be 
descr ibed  b y  m = 2 ,  2 = 0 ,  t he  1.5 J~ mer id iona l  by  
m = 7 ,  2 = 0  a n d  the  10 J( equa to r i a l  g roup  b y  re=O, 
2 = 0  _+ 1, _+ 2 etc. E q u a t i o n  (2) m a y  be s impl i f ied  since 
a---  10 ° and  so A is smal l  a n d  d is r e s t r i c t ed  to  zero, 

also we m a y  for convenience  choose ~00=z0=0. 
R e s t r i c t i o n  (3) can also be s implied,  since M = 7 / 2 N 1  
a n d  1 = mN1/2 +2No, to  

( 2 + q - p ) N o = ( q + s - ½ m - ~ m ' ) N 1 .  (5) 

As on ly  t e r m s  in  (2) for which  all t he  Bessel  f unc t ion  
orders  are smal l  need  be considered  a n d  since Arl,~ 36N0 
i t  follows t h a t  bo th  b racke t s  in  (5) m u s t  be zero. T h u s  
the  p rob lem reduces  to  the  ca lcula t ion ,  for t he  2 th  
m e m b e r  of t he  ruth branch ,  of: 
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C(R, % m,,~) = exp {i~t(~+½~)} _~ Jp(2~Rro)Jq(2~R~) 
p, q, s, m '  

× Js(2~Zr~ sin a) exp{i[(q + s) 

x (~l +g)--m'~M]} , (6) 

where the summation is restricted to sets of values of 
p, q, s and m' which satisfy 

A = p - q ,  m = 2 ( q + s ) - 7 m ' .  (7) 

I t  is noteworthy that  the amplitude of C is not a 
function of 9. 

Method of calculation 

Equation (6) gives the transform, C, of a single set of 
points distributed on a coiled coil; the structure factor 
is thus 

F(R, % m, ~) = .~, f ,C, (8) 

wherefl is the scattering factor of the ith atom and the 
summation was taken over the four main-chain atoms 
plus the fl carbon atom. 

The only combinations of p, q, s and m' which are 
required in the summation in (6) are those for which 
p, q and s are all small and for m = 0 a single term with 
p=~, q = s + m ' = O  is sufficient. Expression (8) may be 
written in the form 

F(R, v2, m,,~ ) = {A(R,m,A)+iB(R,  m,~)} 
x exp {i2(yJ+½~)}, (9) 

and the values of A and B were evaluated at twenty- 
one points in the interval R = 0 - 0 . 2 / ~ - 1  for a wide 
range of m and A by means of a Ferranti SIRIUS 
computer. These values enable the intensity I(R,m,,~) 
for the various rope models to be calculated. The value 
of r0 suggested by Crick (1953b) for the two-strand 
rope was 5.2 A and this was used in calculating A 
and B. In the case of the three-strand ropes r0 would 
be somewhat greater, but since 5.2/~ was an arbitrary 
choice no useful purpose is served by making special 
calculations for the three-strand ropes. The effect of 
increasing r0 is simply to contract proportionally the 
transform with respect to R. 

Coiled-coi l  ropes  

The transforms of the multi-strand rope models 
described by Crick (1953b) can be obtained from that of 
a single strand by adding together the transforms of 
the component strands. In the two-strand parallel- 
chain rope, in which the two strands are related by a 
rotation axis along Oz, the transform of the second 
strand is obtained by setting ~ = y ) - z  in (9), giving 
for the complete rope, after normalizing, 

Tuu(R, v2,m,A ) = F(R,y~,m,,~)½(l + exp (iLu)}. (10) 

Thus I~u is zero for odd ~ and equal to (A2-FB 2) for 
even ~. In the two-strand anti-parallel chain rope the 

second chain is obtained by a rotation of ~ around Oz 
followed by a rotation of ~ around Ox. I t  is readily 
shown that  the normalized transform for the rope is 

T ~  = A exp (i~(y)+½7~)} for even A, ( l la)  
and 

Tu~ = iB exp (i)~(v2-F½~)} for odd ~.  (llb) 

Thus Iu~ = A 2 for even ~ and B 2 for odd }t. No systematic 
absences are thus expected for the two-chain anti- 
parallel rope except near the equator when q = s-- m' = 0 
and so B =  O. 

In the three-strand parallel chain rope the three 
strands are related by a threefold rotation axis along 
Oz and it follows that  

Tuuu = F.½{1 -t- exp (i)~/3)+ exp (i)~2~/3)}. (12) 

Thus Iuuu is zero except when )~ is a multiple of 3 and 
then has the value A 2 + B  2. For the 'two up/one down' 
three-strand rope the transform may be shown to be 

Tuua = (A+½iB) exp {i2(yJ+½~)}, 2 = 3n (13a) 

= ~iB exp {i~(y~+½~)}, ~t v~ 3n (13b) 

and thus I ~ a = A ~ + B 2 / 9  for 2=3n,  and 4B2/9 for 
,~ ~ 3n. Iu~a thus has no systematic absences except 
for m-- 0. 

Discuss ion  

From the sections of the intensity transform shown in 
Fig. 1 it is clear that  if the coiled-coil models are 
correct it should, in principle, be possible to differenti- 
ate between the two- and three-strand ropes and also 
to determine the combination of chain directions by 
studying the X-ray diffraction pattern of s-keratin. 

An important diagnostic feature of the coiled-coil 
model is the group of near-equatorial layer lines with 
m = 0 and ~t small. The separation of these layer lines, 
~Z, gives a value for the ratio (Number of strands/ 
pitch of major helix). As shown in the analysis this is 
independent of the combination of chain sense in the 
rope and has been applied by Cohen & Holmes (1963) 
to paramyosin in which these layer lines are well 
resolved and a two-strand rope is indicated. In the 
case of a-keratin Crick (1953b) suggested that  the fine 
structure in the near equatorials reported by MacAr- 
thur (1943) indicated a three-strand rope. However 
recent measurements by the authors put the value of 
1/cSZ in the range 70-85 A which would give P- -210-  
255 J~ for a three-strand rope or P =  140-170 _~ for a 
two-strand rope compared with the value 186 A 
suggested by Crick. Clearly the question is not yet 
resolved although the seven-strand cable (Pauling & 
Corey, 1953) and single-strand coil (Skertchley & 
Woods, 1960) would seem to be eliminated. 

I t  has been pointed out (Fraser & Macl%ae, 1961) 
that  the spacings of the m--2 and m--7 meridionals 
should be in the exact ratio -~ whereas the observed 
spacings of 5.15 .~ and 1.486 J~ are not. This discrep- 
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Two-Strand Three-Strand Two-Strand 
' X = 4  ' 

, l=3 

2.=1 

,,l= -1 

2.=-2 

A=-3 

A=-4 

0.2 0.1 

m=5A=O 

m = 2  

Three-Strand 
R=4 ' 

2.=3 

A=2 
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a=-2 

Z=-3 

A=-4 

A=-5 

A=-6 

m=10A=0 

m=9 2.=0 

0 0.1 0"2 0"1 0 0.1 0"2(h -~) 
R 

Fig. 1. Sections of the intensity transform of two- and three- 
strand ropes. The full lines are for parallel strands while 
the broken lines have one strand running in the opposite 
direction to the other(s). The scale for m=0 has been 
reduced by a factor of 10. 

ancy  is readi ly  accounted for in Fig. 1 where it will 
be seen tha t  for m = 7 there is considerable in tensi ty  
on layer  lines with 2 < 0  and very  l i t t le for ~ > 0, 
thus  with  imperfect  resolution the measured  spacing 
of the 'meridional '  arc would be greater  t han  the  
calculated value of 1.476 A. Detai led discussion of the 
applicat ion of these calculations to a -kera t in  will be 
repor ted  elsewhere. 

In  conclusion, it  should be noted t ha t  a-helix ropes 
are likely to be collected into organized fibrils and due 
allowance mus t  be made for this. The effect will be to 
superimpose a rapid  oscillation on the t rans form and 
this effect is clearly apparen~ on the m = 2, it = 0 layer 
line of a-kera t in .  In  general  the t ransform of a fibril 
m a y  be obtained by  considering the effect of ro ta t ing  

a rope through an  angle ~0 about  Oz, displacing it  a 
distance z parallel  to Oz and radia l ly  a distance r in 
a direction making  angle ~ with Ox. Thus any  posit ion 
and or ientat ion m a y  be achieved, and since the  angular  
dependence of the t rans form is a lways of the  form 
exp {i;t(~0+ ½~)} the  effect of the changed position and 
orientat ion m a y  be allowed for by  writ ing 

T(r,  q~, z, q)o) = T(O, O, O, O) 

x exp { i [ - ~ o + 2 ~ z Z + 2 7 ~ r R  cos ((~o-~0)]}. (14) 

The t ransform for the  entire fibril will be obtained 
by summing a series of such terms,  one for each rope 
in the  fibril. I t  m a y  be shown t h a t  in cases where the 
N ropes are all of the one type  the radial  average of the 
normalized in tens i ty  t ransform is given by  

N N 
I = [T12/2g2{N+2 Z --Y Jo(2zzRrjk) 

j= 1 ~-=]+1 

x cos (--2~0j~+2uZz~k)}, (15) 
¢ 

which m a y  be compared with  the formula  given by  
0 s t e r  & l~iley (1952) for assemblies of cylinders. 
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