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The Fourier Transform of the Coiled-Coil Model for x-Keratin

By R. D. B. Fraser, T. P. MACRAE AND A. MILLER

Division of Protein Chemistry, C.8.1.R.0., Wool Research Laboratories, Parkville N2
(Melbourne), Victoria, Australia

(Recetved 20 August 1963)

The theory of diffraction by a coiled-coil is applied to «-keratin models and extended to deal with
multi-strand ropes of various strand directions. A method of calculating the Fourier transforms
of multi-strand ropes is described and important parts of the transforms are given in graphical

form.

Introduction

It is now well established that the x-helix described
by Pauling, Corey & Branson (1951) occurs in synthetic
polypeptides (Elliott & Malcolm, 1959) and in globular
proteins (Kendrew, Dickerson, Strandberg, Hart,
Davies, Phillips & Shore, 1960). It has also been
suggested that «-helices distorted into coiled-coils are
the basis of the structure of the k-m—e-f group of
fibrous proteins (Pauling & Corey, 1953; Crick, 1952,
1953a,b). A method of calculating the Fourier trans-
form of a coiled-coil has been described by Crick
(1953a,b) and calculations over limited regions have
been reported by Lang (1956) and Cohen & Holmes
(1963). In the present communication details of the
Fourier transforms of various coiled-coil models of
«-keratin are given as a first step towards the recogni-
tion of such structures from X-ray diffraction patterns.

The coiled-coil model

A continuous coiled-coil may conveniently be de-
scribed (Crick 1953a) by the parametric equations

= 79 cos (wof -+ o)
Y = 7o sin (wol +@o)
z = Pwet/27r + 20

' =11 cos (wit+q1)
y' =r1sin (wit +@1)
2’=0 (1)

where z, y, z are the coordinates of the major helix and
Z',y', 2" those of the minor helix. The major helix
coordinates refer to a right-handed system of fixed
axes and the minor helix coordinates refer to a set of
axes which rotate with the major helix as in Crick
(1953a). The point (', y', 2’) traces out the continuous
coiled-coil as ¢ is varied and the discontinuous coiled-
coil is obtained by supposing a point to occur at {=t,
and further points at fixed intervals of t=#. The
coordinates of the atoms in the seven residues which
constitute the asymmetric unit in the «-keratin model
were calculated from the expressions given by Crick
(1953a) and Lang (1956) and the coordinates for an
undistorted «-helix listed in Table 1. These coordinates

Table 1. Coordinates of a residue in an undistorted,
right-handed «-helix

s Ys Zs Ts Ps

p-C 3-20 0 0 3-20 0
«-C 2-15 0-75 —0-83 2-28 19-3
N 1-04 1-17 0-03 1-57 484
C —011 1-61 —0-44 1-61 93-9
(6] —-0-39 1-72 —1-64 1-76 102-8
p-C* —056 315 1-50 3-20 100-0

are a modified version of those given by Pauling,
Corey, Yakel & Marsh (1955). Setting z;=@s=0 for the
p carbon atom as in Table 1 would produce the type of
knob-hole packing envisaged by Crick (1953b) in his
Fig. 6 for poly-L-alanine. The parameters @o and zo
were taken as zero for convenience and ¢: calculated
from

@1 = @s+ {(N1— No)/ M}pm with ga = 2nMz, cos «/c,

where No (=1) is the number of turns of the major
helix, N1 (=36) is the number of turns of the minor
helix and M (=126) is the number of residues in the
repeat distance ¢ (=186A). The coordinates of the
thirty-five atoms in the asymmetric unit are given in
Table 2 for ro=>5-2 A. All the formulae used in this
account refer to left-handed minor and right-handed
major helices so that the coordinates in Table 1 were
reflected in the 20z plane for the purposes of calcula-
tion and the results again reflected to give the values in
Table 2. In addition we have calculated the changes in
bond lengths and interbond angles which take place
when the x-helix is distorted into a coiled-coil and these
are included in Table 2.

The Fourier transform of the model

We have calculated part of the Fourier transform of
the model by means of the theory for simple helices
given by Cochran, Crick & Vand (1952) and the co-
ordinates given in Table 2. This provided a useful
check on later calculations but is a cumbersome
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Table 2.
(a) Atomic coordinates of asymmetric unit in a coiled—coil with 7y=5-2 A (0z =major helix axis)
z y z z y z
B-C(1) 8400 0-000 0-000 C(4) 6-488 —0-182 4-182
a—C(1) 7-350 —0-886 —0-696 0(4) 6-466 —0-682 3-043
N(1) 6-243 —1-151 0-235 B-C(5) 7-545 —0-989 6-342
C(1) 5-097 —1:658 —0-152 x—C(5) 6-288 —1-039 5-460
o(1) 4-813 —1-973 —1-312 N(5) 5-147 —0-511 6-205
B-C(2) 4-656 —2-844 2-021 C(5) 4.015 —0-190 5-635
x—C(2) 4-103 —1-842 1-002 0O(5) 3-767 —0-300 4-439
N(2) 3-8717 —0-547 1-637 B-C(6) 2:631 —0-753 7-624
C(2) 3-658 0-563 0-966 x—C(6) 2:974 0-342 6-619
0(2) 3-603 0-547 —0-256 N(6) 3-507 1-508 7-304
B-C(2) 2:212 1-591 2-710 C(6) 4-123 2-488 6-688
x—C(3) 3-449 1-795 1-861 O(6) 4-311 2:546 5471
N(3) 4-607 1-960 2-718 B-C(7) 3-395 4:258 8:312
C(3) 5-837 1-892 2-273 «—C(7) 4-600 3-602 7-643
0(3) 6-150 1-692 1-087 N(7) 5-469 3-009 8-664
B-C(4) 6749 3508 3-997 () 6:438 2.164 8:376
x-C(4) 6-892 2-100 3-390 o(7) 6:727 1-779 7225
N(4) 6:679 1-095 4-444

(b) Bond lengths and angles in a coiled—coil compared with values in an undistorted «-helix

Bond Maximum Undistorted Minimum
BC-aC 1-540 1-535 1-514
«C-N 1-472 1-465 1-450
N-C 1-318 1-317 1-307
Cc-0 1-248 1.237 1-226
C—aC* 1-556 1-546 1-528
N-Of 2-864 2-841 2-813

* Indicates next residue.

method and not so illuminating as the use of the
expression derived by Crick (1953a) and Lang (1956)
in which only the undistorted x-helix coordinates for
one residue are needed. The expression for a single set
of points is:

C(R,p,ljc) = 222%«%(27!370)
P g s
X Jq(2r R ) s(2r(l/c)rising)
x Ja(2nRA) exp {i[p(y —po+ k)
+q(—p+po+@1+in)+s(n+¢1)
+d(p+@1—@o+ 3m) —m'pu + 2nzdl/c]}, (2)

subject to the restriction,
Nop+ (N1—No)g+ Nis+ (N1+No)d = I+ Mm' (3)

where p, g, s, d and m' may take any integral value.
All the published versions of (2) & (3) contain minor
misprints or errors. Lang (1956) corrected Crick’s
formulae but has a misprint in (3) whilst the formula
given by Ramachandran (1960) has an erroneous sign
for m’ in (3). In these formulae:

R, , l/c(=Z) are cylindrical coordinates in reciprocal
space; ro, o, 20 are the coordinates of the origin of the
rotating frame at {=0; r; is the radius of the minor
helix; 71 =71(1+ cos «)/2 and 4 =71 (1 — cos «)/2 where
tan o= 2mroNo/c.

The nature of the solution is most simply described

Angle Maximum Undistorted Minimum
BC-aC-N 110-35 112-46 109-26
«C-N-C 123-53 122-55 122-66
N-C-O 125-33 122-56 124-69
O0-C—xC* 122-53 121-05 121-29
C—aC*-fC* 110-45 110-86 109-12
N-C-«xC* 113-70 116-39 112-78
C-N-Ot 116-07 114-12 114-97

1 Indicates next-but-one residue.

in terms of parameters m and A which are related to I by
Z=I1lc=m[h+AP. 4)

This emphasizes the fact that the coiled-coil can be
regarded. as a simple helix of pitch P with asymmetric
units of seven residues distributed at vertical intervals
of » and is a most useful device in the general case
when ¢ is very large. It follows from the theory of
Cochran, Crick & Vand (1952) that the transform will
consist of branches emanating from the origin, and a
series of points on the meridian distant m/h from the
origin, where m= 11, + 2, efc. The separation between
each layer line and the next in a branch will be 1/P.
Thus the 5:15 A meridional reflection would be
described by m=2, 1=0, the 1-5 A meridional by
m=17, 2=0 and the 10 A equatorial group by m=0,
A=0%1, +2etc. Equation (2) may be simplified since
o ~ 10° and so 4 is small and d is restricted to zero,
also we may for convenience choose @o=20=0.
Restriction (3) can also be simplied, since M =7/2N,
and [=mN,/2+1N,, to

(A+g—p)No= (g+s—im—Fm" )N, . (5)

As only terms in (2) for which all the Bessel function
orders are smallneed be considered and since N1~36N,
it follows that both brackets in (5) must be zero. Thus
the problem reduces to the calculation, for the Ath
member of the mth branch, of: ‘
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C(R,y, m, A) = exp {iMy+}n)} X Jp(27Rro)J o(2nRF+)

D,q,8,m’
x J§(2nZr sin &) exp{i[(q+s)
X (prt+m) —m'pul} , (6)

where the summation is restricted to sets of values of
P, ¢, s and m' which satisfy

A=p—q, m=2(q+s)—Tm’. (7)

It is noteworthy that the amplitude of C is not a
function of .

Method of calculation

Equation (6) gives the transform, C, of a single set of
points distributed on a coiled coil; the structure factor
is thus

F(R,p,m,2) = 3 fiCs (8)

where f is the scattering factor of the ith atom and the
summation was taken @ver the four main-chain atoms
plus the f carbon atom.

The only combinations of p, ¢, s and m' which are
required in the summation in (6) are those for which
P, g and s are all small and for m =0 a single term with
p=4, g=s+m’=0 is sufficient. Expression (8) may be
written in the form

F(R,y, m, 1) = {A(R,m,A)+iB(R, m, 1)}
x exp {iA(y+3n)}, 9)

and the values of 4 and B were evaluated at twenty-
one points in the interval R=0—0-2 A-1 for a wide
range of m and A by means of a Ferranti SIRIUS
computer. These values enable the intensity I(R,m,A)
for the various rope models to be calculated. The value
of 7o suggested by Crick (1953b) for the two-strand
rope was 52 A and this was used in calculating 4
and B. In the case of the three-strand ropes ro would
be somewhat greater, but since 5:2 A was an arbitrary
choice no useful purpose is served by making special
calculations for the three-strand ropes. The effect of
increasing 7o is simply to contract proportionally the
transform with respect to R.

Coiled-coil ropes

The transforms of the multi-strand rope models
described by Crick (19535) can be obtained from that of
a single strand by adding together the transforms of
the component strands. In the two-strand parallel-
chain rope, in which the two strands are related by a
rotation axis along Oz, the transform of the second
strand is obtained by setting y=y—= in (9), giving
for the complete rope, after normalizing,

Tuu(R,p,m,A) = F(R,p,m,A)${1+ exp (iAn)}. (10)

Thus I,y is zero for odd A and equal to (424 B2) for
even A. In the two-strand anti-parallel chain rope the
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second chain is obtained by a rotation of = around 0z
followed by a rotation of z around Oz. It is readily
shown that the normalized transform for the rope is
Tua = A exp {iA(p+%n)} for even 1, (11a)
and
Tua = iB exp {iM(y+4x)} for odd 4. (118)
Thus Iye=A2for even A and B2 for odd A. No systematic
absences are thus expected for the two-chain anti-
parallel rope except near the equator wheng=s=m’=0
and so B=0.
In the three-strand parallel chain rope the three
strands are related by a threefold rotation axis along
Oz and it follows that

Tuwuwu = F.3{1+ exp (i2n/3) + exp (:1227/3)} .  (12)

Thus Ly is zero except when 4 is a multiple of 3 and
then has the value A2+ B2. For the ‘two up/one down’
three-strand rope the transform may be shown to be

Tuva = (A+3%iB) exp {iA(y+3n)}, A =3n (13a)
= %iBexp {iA(y+3in)}, A+ 3n (130)

and thus Ilyus = A2+ B?/9 for A=3n, and 4B2/9 for
A # 3n. Iyug thus has no systematic absences except
for m=0.

Discussion

From the sections of the intensity transform shown in
Fig. 1 it is clear that if the coiled-coil models are
correct it should, in principle, be possible to differenti-
ate between the two- and three-strand ropes and also
to determine the combination of chain directions by
studying the X-ray diffraction pattern of x-keratin.

An important diagnostic feature of the coiled-coil
model is the group of near-equatorial layer lines with
m=0 and 1 small. The separation of these layer lines,
0Z, gives a value for the ratio (Number of strands/
pitch of major helix). As shown in the analysis this is
independent of the combination of chain sense in the
rope and has been applied by Cohen & Holmes (1963)
to paramyosin in which these layer lines are well
resolved and a two-strand rope is indicated. In the
case of x-keratin Crick (1953b) suggested that the fine
structure in the near equatorials reported by MacAr-
thur (1943) indicated a three-strand rope. However
recent measurements by the authors put the value of
1/6Z in the range 70-85 A which would give P =210-
255 A for a three-strand rope or P=140-170 A for a
two-strand rope compared with the value 186 A
suggested by Crick. Clearly the question is not yet
resolved although the seven-strand cable (Pauling &
Corey, 1953) and single-strand coil (Skertchley &
Woods, 1960) would seem to be eliminated.

It has been pointed out (Fraser & MacRae, 1961)
that the spacings of the m=2 and m=7 meridionals
should be in the exact ratio § whereas the observed
spacings of 5-15 A and 1-486 A are not. This discrep-
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Fig. 1. Sections of the intensity transform of two- and three-
strand ropes. The full lines are for parallel strands while
the broken lines have one strand running in the opposite
direction to the other(s). The scale for m=0 has been
reduced by a factor of 10.

ancy is readily accounted for in Fig. 1 where it will
be seen that for m="7 there is considerable intensity
on layer lines with A<0 and very little for 4> 0,
thus with imperfect resolution the measured spacing
of the ‘meridional’ arc would be greater than the
calculated value of 1-476 A. Detailed discussion of the
application of these calculations to «-keratin will be
reported elsewhere.

In conclusion, it should be noted that «-helix ropes
are likely to be collected into organized fibrils and due
allowance must be made for this. The effect will be to
superimpose a rapid oscillation on the transform and
this effect is clearly apparent on the m=2, A=0 layer
line of «-keratin. In general the transform of a fibril
may be obtained by considering the effect of rotating

THE FOURIER TRANSFORM OF THE COILED-COIL MODEL FOR oc-KERATIN

a rope through an angle @o about Oz, displacing it a
distance z parallel to Oz and radially a distance » in
a direction making angle ¢ with Oz. Thus any position
and orientation may be achieved, and since the angular
dependence of the transform is always of the form
exp {iA(y+ 4n)} the effect of the changed position and
orientation may be allowed for by writing

T(T’ @, 2, <Po) = T(O’ 0,0, 0)

x exp {i[ —Apo+2n2Z +27rR cos (y—@)]}. (14)
The transform for the entire fibril will be obtained
by summing a series of such terms, one for each rope
in the fibril. Tt may be shown that in cases where the
N ropes are all of the one type the radial average of the
normalized intensity transform is given by

N N
I=|TRINYN+23 3 Jo(2nRry)
j=1 k=j+1

x cos (—Apojx+2nZzk)} , (15)
which may be compared with the formula given by
Oster & Riley (1952) for assemblies of cylinders.
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